

Towards Reliable Amortized Bayesian Inference

Marvin Schmitt
University of Stuttgart, Germany

Focus of this talk:

Data-Efficient Learning via Self-Consistency Losses

Extended abstract, NeurIPS UniReps workshop: arxiv.org/abs/2310.04395

Joint work with

Desi Ivanova Oxford, UK

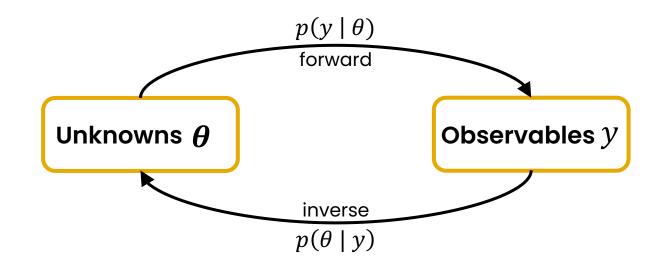
Daniel Habermann Dortmund, GER

Ullrich Köthe Heidelberg, GER

Paul Bürkner Dortmund, GER

Stefan Radev RPI, US

Inverse Problems



Statistical modeling: Parameters θ

Epidemiology: Virus attributes

Image processing: Crisp image

Psychology: Cognitive parameters

Data y

Infection curve (time series)

Blurry image

Reaction times

Amortized Bayesian inference

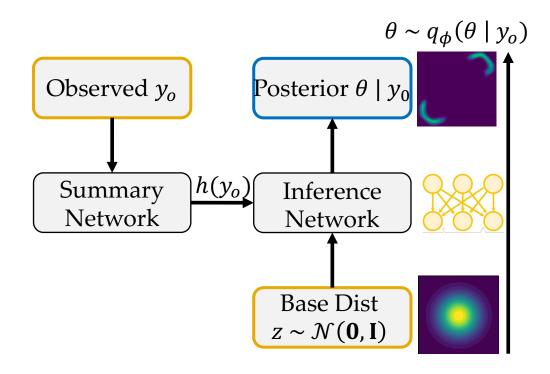
Stage 1: Training (Approximation)

potentially expensive

$\begin{array}{c|c} y \sim p(y \mid \theta) & \theta \sim p(\theta) \\ \hline \text{Data } y & \text{Parameters } \theta \\ \hline \text{Summary} & h(y) & \text{Inference} \\ \text{Network} & \text{Network} \\ \hline \\ & z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \hline \end{array}$

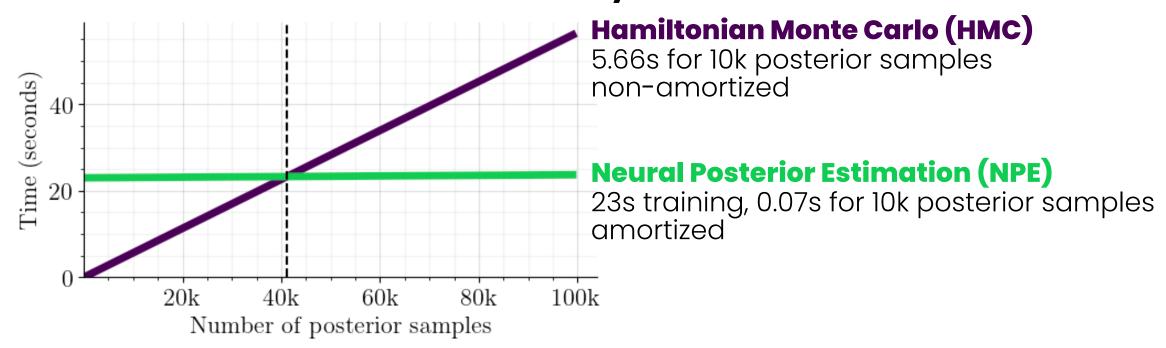
Stage 2: Inference

amortized over many data sets y_o



Approximation and inference are decoupled. Pooling of resources.

Potential of Amortized Bayesian Inference



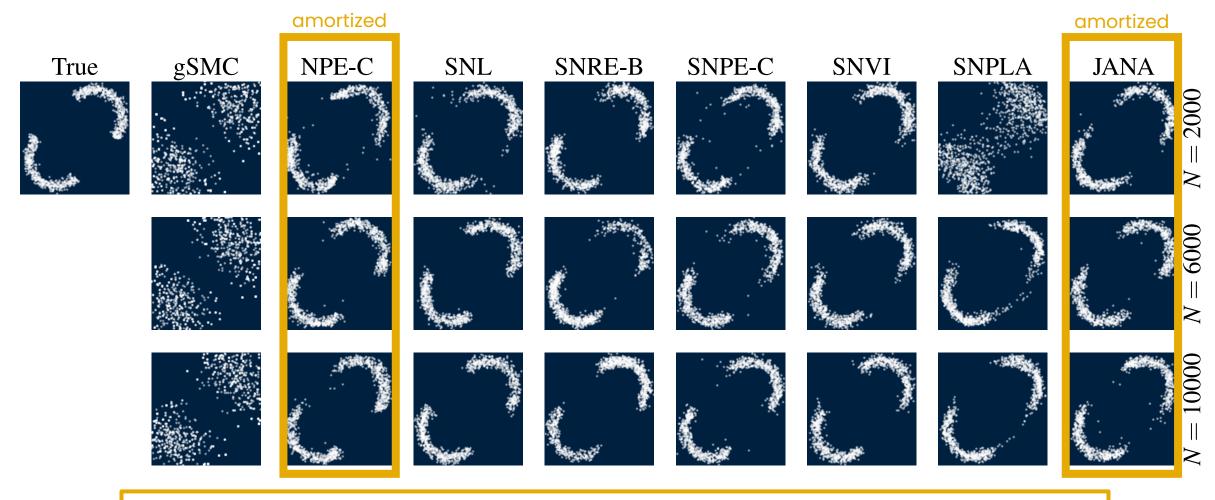
(1) Many model re-fits

- Cross-validation
- Many data sets
- Sensitivity analyses

(2) Real-time inference

- Neurological monitoring
- Adaptive experimental design
- Disease surveillance

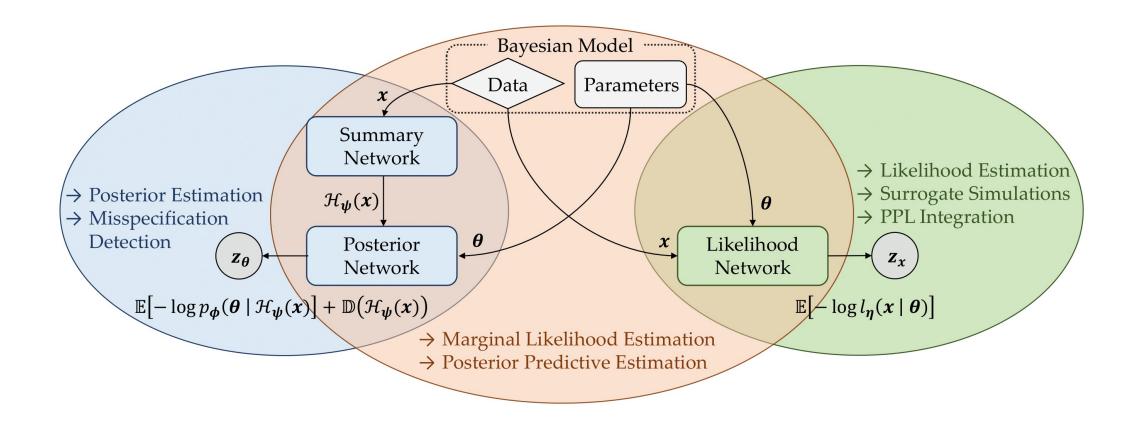
Isn't amortized inference wasteful? No!



Amortized methods perform on-par with non-amortized counterparts!

Jointly amortized learning: Posterior + Likelihood

• Jointly amortized neural approximation (JANA; Radev et al., 2023)

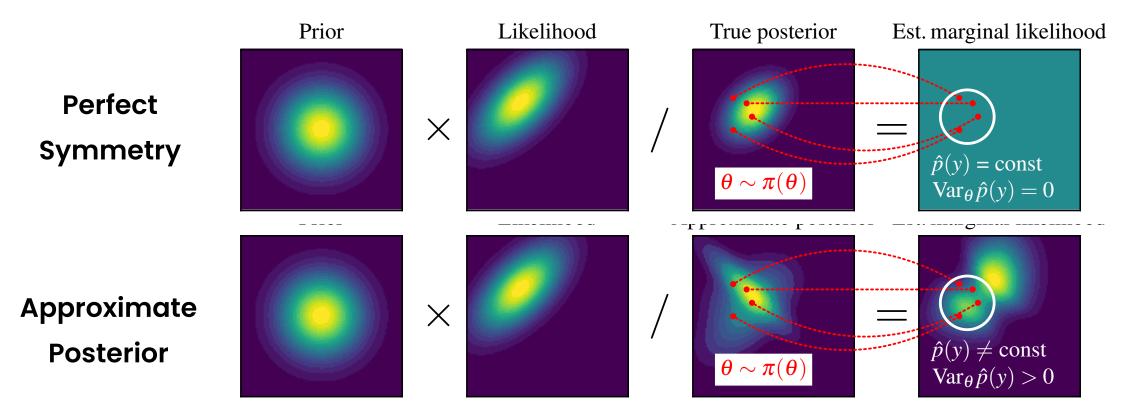


Problems of vanilla Amortized Bayesian Inference

- Neural networks have a bad user experience
- Model misspecification invalidates training
- Normalizing flows restrict network architecture
- Simulation-based training requires lots of training data

Self-consistency criterion

$$p(\boldsymbol{\theta} \mid \mathbf{Y}) = \frac{p(\boldsymbol{\theta}) p(\mathbf{Y} \mid \boldsymbol{\theta})}{p(\mathbf{Y})} \iff p(\mathbf{Y}) = \frac{p(\boldsymbol{\theta}) p(\mathbf{Y} \mid \boldsymbol{\theta})}{p(\boldsymbol{\theta} \mid \mathbf{Y})} \implies \frac{p(\boldsymbol{\theta}_1) p(\mathbf{Y} \mid \boldsymbol{\theta}_1)}{p(\boldsymbol{\theta}_1 \mid \mathbf{Y})} = \dots = \frac{p(\boldsymbol{\theta}_K) p(\mathbf{Y} \mid \boldsymbol{\theta}_K)}{p(\boldsymbol{\theta}_K \mid \mathbf{Y})}$$
$$\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K \in \Theta$$



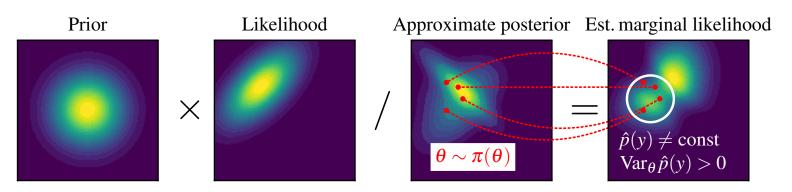
Self-consistency loss

• Idea: Violations of self-consistency property as loss function

$$\mathcal{L}_{\mathrm{SC}}(\mathbf{Y}, \boldsymbol{\phi}) = \mathrm{Var}_{\pi(\boldsymbol{\theta})} \left(\log \frac{p(\boldsymbol{\theta}) \, p(\mathbf{Y} \, | \, \boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\boldsymbol{\theta} \, | \, \mathbf{Y})} \right)$$

• Integration into standard neural posterior estimation loss

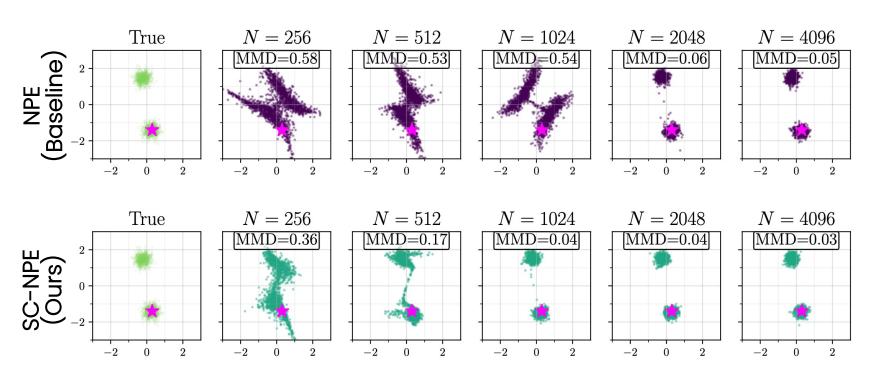
$$\mathcal{L}_{\text{SC-NPE}}(\boldsymbol{\phi}) = \mathbb{E}_{p(\mathbf{Y})} \left[\underbrace{\mathbb{E}_{p(\boldsymbol{\theta} \mid \mathbf{Y})} \big[-\log q_{\boldsymbol{\phi}}(\boldsymbol{\theta} \mid \mathbf{Y}) \big]}_{\text{NPE loss (on fixed } \mathbf{Y})} + \underbrace{\lambda \operatorname{Var}_{\pi(\boldsymbol{\theta})} \left(\log \frac{p(\boldsymbol{\theta}) p(\mathbf{Y} \mid \boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\boldsymbol{\theta} \mid \mathbf{Y})} \right)}_{\text{self-consistency loss } \mathcal{L}_{\text{SC}} \text{ with weight } \lambda \geq 0} \right]$$

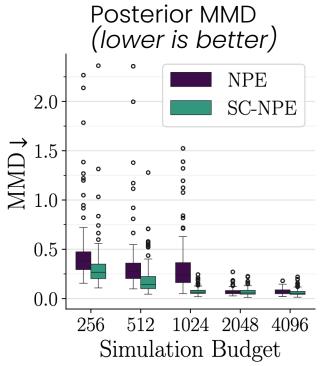


Experiment 1: Gaussian Mixture

Posterior estimation, varying training budget N

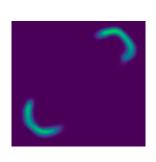
- Model: $\theta \sim \mathcal{N}(\theta \mid \mathbf{0}, \mathbf{I}), \quad y \sim 0.5 \, \mathcal{N}(y \mid \theta, \mathbf{I}/2) + 0.5 \, \mathcal{N}(y \mid -\theta, \mathbf{I}/2)$
- Results: Better posterior samples compared to vanilla NPE



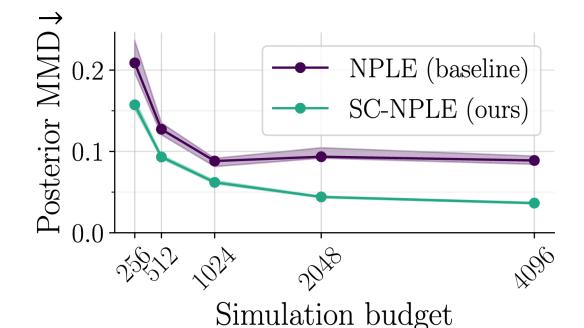


Experiment 2: Two Moons

Posterior and likelihood estimation, varying training budget N



(1) Better posterior samples (MMD, lower is better)



(2) Sharper log marginal likelihood

Method	N=512	N = 1024	N = 2048	N=4096
NPLE SC-NPLE	$\begin{array}{ c c } \hline 6.51 \pm 0.11 \\ \textbf{1.70} \pm 0.02 \\ \hline \end{array}$	7.28 ± 0.10 1.37 ±0.02	9.07±0.06 1.21 ±0.01	10.21±0.08 1.14±0.01

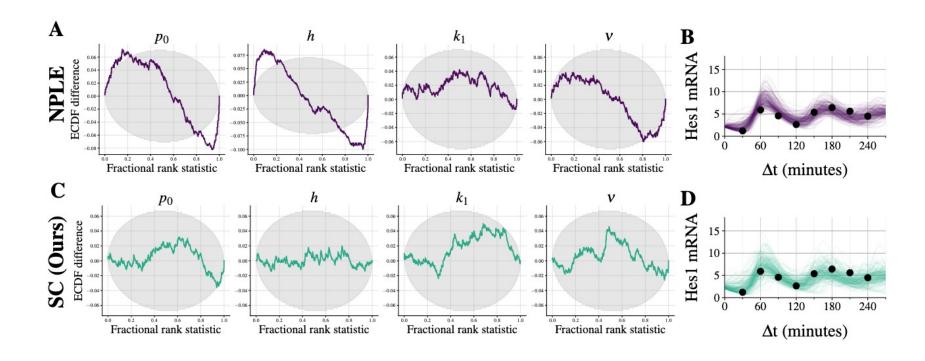
Width of 95% CI of the LML for a data set, mean \pm SE

Experiment 3: Hes1 Expression Model

Posterior and likelihood estimation, N = 512 training budget

Results compared to NPLE baseline:

- Better simulation-based calibration (SBC; Talts et al., 2018)
- Similar posterior predictive results



Summary and Outlook

Self-consistency losses reward consistent marginal likelihood estimation

Gains:

- Improved neural posterior estimation (SC-NPE)
- Improved neural likelihood estimation (SC-NPLE)
- Improved neural marginal likelihood estimation (SC-NPLE)
- Direct extension to popular loss functions in amortized inference

Limitations:

- More expensive upfront training → later break-even with non-amortized
- More hyperparameters → develop automated choices

Acknowledgments and Contact

Thanks to my supportive colleagues and advisors:

- Paul Bürkner, TU Dortmund University, Germany, paul-buerkner.github.io
- Stefan Radev, Rensellaer Polytechnic Institute, US, <u>faculty.rpi.edu/stefan-radev</u>
- all BayesFlow contributors: www.BayesFlow.org

Partially funded by:

CONTACT

I am on the job market for winter 2024. Let's chat!